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NON-LINEAR WAVES IN SLIGHTLY ANISOTROPIC ELASTIC MEDIA* 

A.G. KULIKOVSKII and E-1. SVESHNIKOVA 

Slightly non-linear plane waves in elastic materials possessing an 

arbitrary kind of intrinsic anisotropy as well as anisotropy caused by 

homogeneous initial deformation are considered. The influence of the 

deformation anisotropy on the behaviour of simple and shock waves was 

investigated in detail in previous papers /l-3/. 

When considering low-amplitude waves the internal energy of the 

medium can be expanded in series in the deformations, while being con- 

strained to terms not higher than the fourth degree. If the anisotropy 

influences just the form of the quadratic terms, then the internalenergy 

can always be reduced to the same form as for deformation anisotropy 

with conservation of all the non-linear wave properties studied in /l-3/. 

If the anisotropy results in the appearance of cubic termsintheinternal 

energy expansion that have the same order of magnitude as the quadratic 

terms associated with the anisotropy, then it is shown that conversion 

of the coordinate system in displacement gradient space can formally 

reduce the intrinsic anisotropy of the material for certain kinds of 

anisotropy, particularly, for transversally-isotropic and orthotropic 

media, to the same form as for anisotropy produced by preliminaryelastic 

deformation in an isotropic material. 

1. Description of the medium. The elastic medium is given by its elasticpotential 

0 = POT (e,~, gi/, dj%, . . ., S). Here U is the internal energy and S is the entropy per unit 

mass, ei/ is Green's finite strain tensor, p0 is the density of the medium in the unstressed 

state, gif is the metric tensor of the unstrained state, and d'k' 
,mn.. are tensors giving the 

difference of the medium from an isotropic medium, for instance, the tensors giving the 

symmetry group. 
When studying plane waves it is convenient to introduce the notation aw,/az .= u.i (.t, t) 

where t is the wave propagation direction and TV, are the displacement vector components. The 

coordinates x,,x*, .rQ=x are Lagrangian, and in the undeformed state rectangular Cartesian 

(&?i, = U- The equations of motion for plane waves and their corresponding conditions on a 

discontinuity have the form /l, 4/ 

Here W = dxldt is the Lagrange velocity of the discontinuity. Both the initial defor- 

mations u,",E+ (cz,~ = 1,2)and their changes during the passage of the wave AU* will be 

considered to be small, not exceeding a certain quantity e and we can use the expansion of 

the function Q in series in ei1 while being constrained' to the minimum number of terms 

that will cover the principal non-linear effects. It is known from /1_4/thatitisnecessary 
to expand Q, to the power e.' to obtain non-linear effects in transverse waves, and to the 
power e* for longitudinal waves. 

We will assume the difference of the material from isotropic to be small and we will 

characterize it by a certain parameter 6 such that 6'Se. In particular, the deformation 

anisotropy produced by the preliminary deformation %B N e (cz,fi = 1,2) automatically satisfies 

this. The waves become quasilongitudinal and quasitransverse for a slight anisotropy of any 

nature and all three characteristic velocities will be distinct. 
We will represent the potential @ in the form of two components Q, = (Do •J- or. The first 

component gives an isotropic medium without initial deformations. The small second term 
describes the deviation of the material from isotropic. Both functionsQO and @, are rep- 
resented by an expansion in series in U, (we later utilize the notation ui = U, u,= v, Us = w) 
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00 = ‘/&,a + p’I, + pIJ* -I- yl, + VZ,’ + ?Gz: + . . . 
+ POT, (S - S,) = V*p (u' + u') + V, (h + 2p)r3 + 

bw (u’ + 9) + ad + l/J1 (u’ + u’)’ + ‘ldkwa + ‘l?mw*(u* + 

3) +PJ, (S - So) 

07 

41.2) 

I, = elf. Ia = eIJeIJt Ia = eiJeJkeW 
a = ‘/,h + p + fi + y + v, 2b = h + 9 + B + ‘/a~, 
h = ‘l,lr. + p + B + V/rY + E 
UI, = B,u’ + B,v* + B,w’ + B,uv + B,uw + B,vw + 

A,u’ + A# + A,w= + A,u=w + A,dw + A,uw’ + 
A,vw= f A,uzv + A,uv= + A,,uvw 

(1.3) 

Here h, @, p, y, v, E are the elastic moduli of the medium, a, b, h, k, m are their combi- 
nations, 
d!::.. 

Al, Bl are constants describing the anisotropy, i.e., containingthetensorcomponents 
and magnitudes of the initial deformations cog. We will identify the largest of the 

coefficients Al, Bi by 6. Consequently, At,Bt of the order of e or less, which enabled the 
function @,to be taken in the form of a monomial of not more than the third degree in general 
form which corresponds to the most arbitrary kind of anisotropy. In the absence of initial 
deformations Ai, Bt are constants describing the difference between the elastic properties 
of the medium and the isotropic properties. The function 0 does not contain linear terms, 
which denotes no stresses in the undeformed state. 

In the general case it can be assumed that all the constants Al, Bi are of the same order 
of smallness 6. But then terms with B, in the expansion @I will be of an order greater than 
the terms with Ai and cubic terms cannot be written in O),.In this case, in order for terms 
account of the anisotropy to be of the same order as the term h (u' + lP)O containing the 
non-linearity, it is necessary to select e such that B, - 6 - ea. Then the form of the function 

Q, = @, + u+ will differ in no way from the elastic potential 0 of the isotropic medium in 
which the anisotropy is induced only by the term e, - e,, the preliminary strain. The non- 
linear waves (simple, shock, and the selfsimilar problem using them) are studied in detail in 

/l-3, 5/, and all these results then go over to the initially anisotropic media. 
Moreover, we will not generally assume that Ai and Bt are of the same order. When the 

cubic terms will be taken into account it will be considered that the greatest coefficient Ai 
is much greater than all the Bi. 

2. Quasilongitudinal waves. In slightly anisotropic media one quasilongitudinal wave 
(Aw>Au, Au) and two quasitransverse waves (Aw< (Au'+h~+)'l*) exist. To clarify the non- 
linear effects in the quasilongitudinal wave behaviour, it is sufficient to have the expansion 
@ up to terms es /l, 4/, which means taking only terms with Bi in the component @r. It can 
be seen that anisotropy of the medium of any kind for the quasilongitudinal wave will automati- 
cally be reduced to deformation anisotropy. For this, it is sufficient to transfer the origin 
in the space ~(1, i.e., to set U+ = u + Bd(Zb), v+ = v-l- B,l(2b), w2 = w + B,/(3a) and the medium 
will behave in the new variables as isotropic with preliminary elastic deformation in the 
quasilongitudinal wave. 

3. Quasitransverse waves. By using (1.1) for quasitransverse waves the longitudinal 
component w can be eliminated by expressing it in teams ofu and V. Consequently, the two- 
dimensional potential F(u,) (a = 1,2)can be introduced in place of the elastic potential 
Q, (IL,) (i = I, 2, 3). The procedure for eliminating u, =w is described in detail in /6/. 
The initial assumptions of this paper that the second derivatives of a, with respect to u,v 
and w,u or W,U do not exceed, respectively max (el.6) and max {e,6} where e = max (u.0) 
are satisfied. The system of Eqs.(l.l) is simplified here and contains two equationsofmotion 
or two corresponding relationships on the discontinuity 

The expression 

F - 'I, (f - g)u' + 'I, (f + g)v' - l/,x (u' + v')' (3.2) 

was obtained for F in /6/ in which a quadratic representation was taken for 0, (cubic terms 
in (1.3) were not taken into account), where f, g, x are constant coefficients. The small 
quantity g is the sole parameter taking complete account of the anisotropy under the assumption 
that O1 contains only quadratic terms. The elastic constant x characterizes the non-linear 
propertiqs of the medium. .The qualitative difference in the non-linear effects depends on the 
sign of x. For an isotropic medium with the initial strains all. saa (the zlr zp axes in the 



plane of the wavefront are selected so that F,? -= 0) 

If there is no initial strain in the isotropic medium, then f -= p, g = 0 /4/. 
For a medium with anisotropy of the general form (1.3) (taking cubic terms into account) 

we have for the arbitrary axes x, 

(3.3) 

Since there is a sufficiently complete investigation of the non-linear elastic waves /I- 
3, 5/ for the case of deformation anisotropy (3.21, it is reasonable to clarify when and how 
the function F reduces to the form (3.2) for the general case of the anisotropy (3.3). It 
turns out that this is possible only for e = d--= 0, i.e., for media with certain symmetry 
properties when A, =A,, A, =A, in (1.3). It will be shown below that precisely such a 
property is possessed by transversally-isotropic and orthotropic elastic media. 

Fig.1 Fig.2 

For e L-- d = 0 the cubic terms in expression (3.3) for F can be eliminated by a parallel 
transfer of the coordinate axes in the uv plane. The new origin 0, should be at the point 

(Wx, Wx). By a subsequent rotation of the axes around the new origin 0, through an angle c+- 
the function F for the anisotropic medium is reduced to a form that agrees with (3.2) (the 
linear terms are denoted by the multiple dots) 

F = ‘/* (f* - ET+) u+‘I -I- l/P v* -t- &?*I v** - I!*% (u*” i- v**Y f - ’ * (3.4) 

f,=+4l!+Y, ,,=[(,+2~i”+(s+4+)1]‘/’ 

u* := (u - 24ik)cos 'p t- (u - 2$x) sin 'p 

u -- (--II -j- Z+)sin 'p i- (u - 2pix)cos tp 

t; 2; = -(s + 4pglx)ilg -i- 2(/J* - q*yx1 

The stresses in the new coordinate system are non-zero in the undeformed state, as is 
indicated by the appearance of the linear terms in the function F because of the coordinate 
transformation. However, neither the shock adiabatic equation nor the equation of the plane 
wave integral curves and the expression for the characteristic velocities contain theseterms. 
Rotation of the L~,Y axes corresponds to rotation of the r,,z, axes in physical space. Up 
to now these axes have been arbitrary in the plane of the wave front and their selection can 
be managed. The description of the non-linear elastic wave behaviour in an anisotropic medium 
in the new variables +,ve is the same as in a preliminary deformation anisotropic medium. 
All the results obtained in /l-3, 5/ remain valid. 

Integral curves of quasitransverse simple waves are presented in Fig.1 and the shock 
adiabatic for the shocks and a circle on which the-entropy is S = coast are shown in Fig.2. 
The radius of the entropy circle equals R = [(u-Q/x)% + (V- Zp/x)~]% where U,Y are the 
values of u,v ahead of the discontinuity. 

4. Transversally-anisotropic and orthotropic media. These media are used in 
many problems of mechanics as*models of anisotropic materials, where the difference of a 



medium from isotropic will often be slight. For instance, the anisotropy of materials,caused 
by their fabrication (stamping and rolling), and the anisotropy of rocks comprisingtheupper 
mantle of the earth, are small and possess certain syrraetry properties. 

For an isotropic medium its geometry is described by the metric tensor gfl. To describe 
the deviation of a medium from isotropic, the tensors di!!. are introduced. There is one 

such tensor in the medium under consideration and its special form can be indicated due to 
the symmetry properties. There is a certain derived direction 1 in planes orthogonal to it 
in a transversally-isotropic medium (TIM) and the properties of the medium are isotropic. 
Since the direction of this axis is immaterial, it is given by the square of the vector 1, 
i.e., the tensor I,, =aIal where ai are proportional to the direction cosines of the axis 1 
/7/. Orthotropic media possess three mutually perpendicular planes of symmetry, which can be 
given by a symmetric tensor of the second rank d,, /7/. The TIM model is a special case of 
an orthotropic medium when d,f = atal for the mathematical description. 

Thus an elastic medium is given by its potential (0 = @(~,,,g,~,d~,,S). Only sixindepen- 
dent scalar invariant6 containing the strain components lr,Itr 1, 

dlJ% K, = Gs,ksk~, K8 = d&J&i 

presented in (1.2) and K, = 
can be composed from the three second-rank tensors sit, gtj, &I . 

Therefore CD = Q (I,, I,, I,, K,, K,, K*, S). Note that there are only five independent invariants 
in TIM, since the invariant KS is proprotional to K1. 

Wewillassumethatthedeviationofamediumfromisotropicis small. For a quantitative 
description of this fact we assume that the tensor components d,, have an order of smallness 
6 < 8. This is not the only method of describing the smallness of the anisotropy but we will 
use it. Then the invariants KI are obviously of the order of K, - es, K, _ $6, K, - ~61. 

Following the previous method, we will use an expansion for the part of the elastic 
potential CD, taking account of the anisotropy in which terms up to a total of the fourth order 
of smallness in e and 6 are written down 

@r =a,K,P + a$, + s&I, f aIKJ, + a,KJ,’ + a,I,K, -l-~a7KgIl 

The coefficients a, are the elastic constants of the medium: the magnitudes are finite. 
For TIM Q, = 0. 

Changing to the variables u, v, w we find expressions for the coefficients At, Bk in 
(1.3) in terms of the components of the tensor d,, and ea8, a,fi = i,2. As is seen from (1.3), 
the calculation for Al, should here be performed to an accuracy e and for Bk to an accuracy 
9. In quasitransverse waves w-e', consequently, the terms with A,, A,, . . ., A,, A,,, B, 
take no part in the consideration, while the coefficients i3, and B, should be calculated to 
accuracy e. Firstly, we obtain 

A, = A, = ‘l,a,d,,, A, = As = ‘tta,&, 

i.e., for TIM and orthotropic media the coefficients e and d discussed in Sect.3 above vanish. 
This means that for these materials the investigation of the non-linear elastic waves will 
result in the case of deformation anisotropy /l-3, 5/, as has been shown in Sect.3. 

The two-dimensional elastic potential F has the form (3.3) while the coefficients are 
calculated in terms of the components of dij from the formulas 

p = ‘/,odz,, q = ‘/,od,,, o = a, - 26 (a, + a,)/(& + p) 

s = 2 (P + ‘/,y)e,, + ‘/P,,m - dlsdls (a, + a,)‘/0 + P) 
g = (P + a/iv)(ezs - ell) + ‘/,m fd,, - d,,) 

f = P + 2bI10 - (P -t S/,y)(ett f err) + 2Ee,,‘- Vpa,dJI + 

‘/,m (dtl + 4, i- 2d~~) + ‘/*a, hdtl f e,,4, + 2e,,d,,) 

m = a, + 4a,d,, + a (en + ed 

In order to reduce the function F to the form (3.2), the origin in the ZLV plane must be 
shifted to the point O,(od,,, 04~). The expression for s+ 4pqlx in formula (3.4) toevaluate 
the angle 4, contains components of the initial strain and the tensor d,,. 

From the very beginning, axes rr,rr can be selected in the formulation of the problem 
inwhichthese components are connected by the relationship 

2 (P + V&e,, + VJndl, - d&, [(ar + a3’/@ -t P) + o’/ul = 0 

In such axes the function F again has the form (3.2) and the anisotropy parameter is 

8. = 8 + r/,o' (&' - d,,%. 
In particular, d,, =afal for TIM, where cz( are proportional to the direction cosines 

of the axis land have a magnitude -6% Then 

p = ‘/,oa,a s1 q = ‘/ww,, 8 = (P + ‘/rY)(esl - 4 + 
‘/,m (as’ - ccl’) 

s = 2 (P + V,y)el, + ulaI P/,m - aI’ (a, + a,)‘/(5 + r)l 
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If there 1s no deformatic,n anisotropy, l.e., P,~ y= 0 then the coordinate axes .r,. .I‘.’ 
should be selected so that one of them ( x2, say) coincides with the projection of I on the 
plane of the wave front. Then a, 0, s = 0, g* = ‘:,mcz,2. As is shown in /l, 2/, In order to 
be able to describe the behaviour of shocks in the whole UL' plane, i.e., to havethecomplete 
shock adiabaticpassingthroughthe point .4 (C', V) corresponding to the state before the lump 

(Fig.2), the anisotropy parameter fi+ should be small, of the order of N' - E2. where R 1s 
the radius of the circle passing through the origin on which S conr;t. In this case I(' 

fj2 -I- (V - wa2aJ2. In order that g*- H'. It_ 1s either necessary to have a sufficiently 

small anisotropy such that czcznlts - F (at least along the .r? axis), or the quantity a, is 

small because the direction of wave propagation (the J axis) is close to 1. 
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TWO APPROACHES TO THE INVESTIGATION OF ANTIPLANE DEFORMATION OF AN 
ISOTROPIC SOLID WITH A THIN ELASTIC INCLUSION* 

V.K. OPANASOVICH 

An approach is proposed to the investigation of the state of stress and 

strain of a piecewise-homogeneous plane consisting of a matrix and a thin 

tunnel-like rectangular inclusion with rounded-off corners under the 

assumption that such a composite body is under antiplane deformation 
conditions. A numerical comparison is made of the results obtained in 
this paper and on the basis of an approximate model /l/. It is shown that 

they agree satisfactorily at sufficiently large distances from the 

vertices of the inclusion, when the inclusion is more pliable than the 

matrix. 

1. We assume that ideal mechanical contact conditions are satisfied on the material 
interfacial line L. We select an 0~~2 system of Cartesian coordinates with origin at the 
centre of a rectangular inclusion and the Oz.axis directed along the axis of bodydeformation. 
We know that the function reflecting the unit circle y on the contour L has the form /2, 3/ 
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